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The Gibbs-Curie principle [i, 2] confirms that the external equilibrium shape of a 
crystal gives the minimum surface energy with a prescribed volume. Here it is implicitly 
assumed that the main mechanism of mass transfer in forming an equilibrium crystal face is 
diffusion of substance and vacancies within the crystal; thereby the more widespread mechanism 
of mass transfer connected with the volume of substance between the crystal and the external 
medium is excluded. In fact the last mechanism is fundamental in almost all modern technolo- 
gies for crystal growing from solutions and melts. For this reason it is natural to look at 
the problem of an equilibrium face from several other positions by studying the problem of 
the thermodynamic equilibrium of a crystal with its own melt or saturated solution. 

The boundary problem is considered below which describes thermodynamic equilibrium of 
an anisotropic elastic body placed in its own melt. It is shown that it always has a solution. 
Existence of a solution for this problem is connected with the geometry of phase separation, 
and for a crystal placed in its own melt, with its external shape. The last situation points 
to the idea that if in a thermodynamic system of an elastic body-melt it is possible to .ignore 
the surface energy of phase separation, then the equilibrium crystal shape may be determined 
as that with which a solution of the corresponding problem of thermodynamic equilibrium exists. 
Some necessary conditions are obtained for existence of a solution for theproblem in question 
which may be assumed to be limits on the equilibrium shape of the crystal face. The result 
found shows that not only free surface energy is responsible for an equilibrium crystal face. 
There are other mechanisms connected with conditions for existence of dynamic equilibrium of 
a crystal with its own melt, with crystal elastic properties, and with the anisotropy of these 
properties. 

i. The first Gibbs principle states that in a state of thermodynamic equilibrium for an 
isolated system its entropy S reaches a maximum in all possible states of the system with a 
prescribed energy level, and second that in the state of equilibrium for an isolated system 
its energy ~ reaches a minimum in all possible states of the system with a prescribed entropy 
level. Gibbs considered them as the main original claims of equilibrium thermodynamics. 
This only became generally acknowledged recently when it was possible to give an account of 
all static thermodynamic equilibrium theories by proceeding from them. 

The Gibbs principles are considered general. All parameters which may change in the 
processes in question are essentially subject to variation in them. They are valid in the 
case when equilibrium is considered for two substances at whose interface it is possible for 
there to be transformation of one substance into another (phase transition). Here the inter- 
face and masses of these substances vary. 

Let V be a region in R 3 which is separated into two parts (V~ and V 2) by surface ~. Two 
phases of some substance are in regions V I and V 2. The solid phase will be modelled by an 
elastic body with an internal energy density U I depending on distortion x i and entropy s (x i = 

8xi/8~ ", x i are Cartesian coordinates of the observer, ~a are associated Lagrangian coordi- 

nates, indices i, j, k... and a, b, c... take the valeus i, 2, and 3, the first correspond to 

projections on axis x i, the second on axis ga, x i = xi(~,) are Cartesian coordinates of par- 
ticles of the substance in a deformed condition). The second phase is assumed to be liquid. 
Its internal energy U 2 depends on density p and entropy S. If it is accepted that the system 
in question is adiabatically isolated, then the thermodynamic equilibrium conditions are a 
stationary point of the energy functional 

E= ,I pUld'~ + .i pU2dv (1.1) 
V 1 V 2 
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a set of permissible functions xi(~), s(~a) which satisfy the adiabatic condition 

~q = f ps & + ( ~)s & = cons~ 
V 1 g 2 

(1.2) 

(dT is element of volume). 

Euler equations of variation problem (i.i), (1.2) have been obtained in [3]. We give 
them a geometrically linear variant. We assume displacements of points of the solid phase 

o o 

wi(g a) = xi(g ~) -- xi(~ n) are small., (xi(g a) are Cartesian coordinates of the points of an 

elastic body in an undeformed condition). Their gradients are assumed to be small. We 
assume the elastic body is physically linear: 

1 ~jhl " . { s - - E ~  j k lq j%I  

Here ~ks is thermal expansion coefficient tensor; sij = (Wi, j + wj,i)/2 is strain tensor; a 

comma in the indices signifies partial differentiation with respect to coordinate; (]E is heat 

capacity with constant deformation; E0iJ ks is elastic isothermal moduli tensor; and T o is melt- 
ing temperature. 

The conditions of thermodynamic equilibrium in the elastic body-melt system take the 
following form: in region V, occupied by solid phase, 

.. OU 1 OU t 
~i; = ~ 1 7 6  = ~ ~ -~ ;  r =  o-v 

(oiJ is stress tensor in the elastic solid phase, T is temperature); 
liquid phase, 

P,i = 0 ,  p = - -  p~- OU2 OU2 
aU, o ' T =  & 

( 1 . 3 )  

in region V 2 occupied by 

(1 .4 )  

(p is pressure in the melt). In addition, at ~ there should be fulfillment of the condition 
of equality for mechandcal forces 

o%zj - -  p n  {la = 0 ( 1 . 5 )  

and thermodynamic p o t e n t i a l s  

i 

(n i are vector components of the normal to ~). Thermodynamic potentials for the solid and 
liquid phases have the form 

~,.  = - o  ~ j  + , o ~ ( u 1 -  r s ) ~ ,  ~ j  = o~ p + u ~ - -  r~ ~j~ ( 1 . 7 )  

where ~i, ~z are densities of the solid and liquid phases in the undeformed condition and 6~ is the 

Kronecker symbol. As shown in [3], among three conditions of (1.6) only one is independent. 
It is possible to separate it by turning (1.6), for example, with the vector of normal n i. 
The relationships (1.6) taking account of (1.7) are presented as 

- - o % ~ J n i  n~ + P l ( U ~ - - T s t )  i a = P 2  ~ + U s - - T s ~  . 

2. We show that problem (1.3)-(1.6) does not always have a solution. For this purpose 
we shall assume that the solid phase is uniform but anisotropic. We assume that V~ c V 2. 
This corresponds to the situation when an elastic anisotropic body is in its own melt. We 
also assume that th emelt is hydrostatically compressed: 

Plav 2 = Po" (2. i) 
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In the general case temperature T is a Lagrangian factor in variation problem (i.i), 
(1.2) for limiting (1.2), and consequently T is a real number. This means that in thermo- 
dynamic equilibrium in the solid-melt system the temperature is cons'rant (T = const). The 
first equation of (1.4) and bound@ry condition (2.1) lead to the situation that if a solu- 
tion of the original problem exists, then pressure in the melt p = P0. From the fact that 
in region V= temper@.ture and pressure are constant, there follows uniformly through space 
in region V 2 and s = s 2 = const. This reflects the generally known fact that a molten heat 
conducting material may be in thermodynamic equiilbrium only with constant fundamental 
parameters throughout the volume. 

It is easy to prove that spherical tensor oij = ~p0~iJ and s = s I = const satisfy Eqs. 
(1.3) in region V, occupied by solid phase, and boundary condition (1.5). It is noted that 
in view of linearity of the elastic problem in region V, the solution obtained is unique. 
Whence uniqueness follows for the solution constructed for region V 2. 

In order that the solutions of Eqs. (1.3) and (1.4) in regions V I and V 2 constructed 
give a solution of the original problem for thermodynamic equilibrium in the solid-melt sys- 
tem it is necessary to satisfy relationship (1.6). We analyze it. It is evident that the 
right-hand part of it is a value constant in ~. The left-hand part is presented in the form 

o o 

- -  ~ k ~ h j n i n J  + Pl  (U1 - -  T s l )  = ~ i j h ~  ~ ~2 ~ k  ,~i,q~o + Pl  (U1 - -  T s i ) ,  ( 2 . 2 )  

where Eij k~ is tensor of elastic adiabatic material compliances. Then the required condition 
for fulfillment of condition (1.6) in ~ is constancy of the right-hand part of (2.2) in ~. 
The second term of (2.2) satisfies this requirement, which follows from the solution of Eq. 
(1:3) constructed for the solid phase. The first term of (2.2) is not independent of 
spatial coordinates. This is connected with the fact that vector components of the normal 
depend on x. In particular, if ~ is a sphere, then the first term of (2.2) at different 
points on the sphere takes different values in the general case, and consequently it depends 
on spatial coordinates. Thereby it is possible to confirm the problem of thermodynamic 
equilibrium of an anisotropic sphere in its own melt which is hydrostatically compressed does 
not have a solution. 

Thus, a necessary condition for existence of a solution to the problem of thermodynamic 
equilibrium for an elastic anisotropic body with its hydrostatically compressed melt is the 
condition 

E ~ h n i n j  I~ = const ,  ( 2 . 3 )  

and it is possible to consider it as a limitation on the shape of the interface with which 
solution of the problem of thermodynamic equilibrium exists. 

Comments. i. It is logical that in studying an equilibrium face of a crystal in a 
thermodynamic elastic body-melt system it is necessary to introduce one element, i.e., an 
interface, ascribing to it some free surface energy. This is equivalent to the fact that to 
functionals for total energy and entropy it is necessary to add corresponding surface integrals. 
However, if the density of free surface energy is of the order of the density of phase energy, 
additions for macrobodies may evidently be ignored since surface energy in this case will be 
of the order of 6/L << i compared with the phase energy (6 is interphase layer thickness, L 
is characteristic size of the system). 

2. For isotropic elastic materSals (2.3) is satisfied identically. In fact, Eij k~ 
here has the structure Eij k~ = A6ij5 k~ + Bsik~j ~, where A and B are material constants. 

Whence 

Eh ~ j ijhn n = (3A + B ) n ~ n  ~ = 3A + B = const .  

3. In the general case solutions of Eq. (2.3) are second order plane surfaces. This is 
confirmed in experiments [4] where an equilibrium face is a series of flat surfaces which do 
not intersect along a straight line, but are connected by rounded sections. The Wolf theorem 
ignores this fact from the start by not permitting any other forms of face apart from flat. 
Nonetheless, Landau on the basis of the Wolf theorem explained the existence of these"round- 
ed" areas [5]. For this he studied in some detail some topological properties of free energy 
functions for a crystallographic plane in relation to its orientation. 
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4. Similar to (2.3) the structure has a necessary condition for existence of a solu- 
tion to the problem of thermodynamic equilibrium of a system consisting of two uniform solid 
phases of a single material: 

(E '~ \  - -  E~-~) n~nJ I-~ = const  

(E'ioks and E"ijk~ are elastic adiabatic compliance tensors for the corresponding phases). 
It a• follows from this that the interface may be plane or a second order surface. 

5. The result obtained is also of practical interest. It is well-known [6] that direc- 
tionally solidified eutectic alloys from a phenomenological point of view are anisotropic 
materials. In order to obtain in them a regular columnar or lamellar structure it is very 
important to have control of the shape of the interface with direction solidification. For 
very slow, almost equilibrium processes of directional solidification, an increase in pressure 
in the system leads to the situation that the phase interface will tend towards a flat sur- 
face or to a second order surface. Practice shows that in fact a plane boundary gives the 
best regular eutectic alloy structure. 

LITERATURE CITED 

i. O.G. Kozlova, Growth and Morphology of Crystals [in Russian], Izd. Mosk. Gos. Univ., 
Moscow (1983). 

2. Kh. Lyupis, Chemical Thermodynamics of Materials [in Russian], Metallurgiya, Moscow 
(1989). 

3. V.L. Berdichevskii, Variation Principles of Solid Mechanics [in Russian], Nauka, 
Moscow (1983). 

4. Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1984). 
5. L.O. Landau, Collected Works Devoted to the Seventieth Anniversary of Academician 

A. F. Ioffe [in Russian], Izd. Akad. Nauk SSSR, Moscow (1950). 
6. V. Kurtz and P. R. Zam, Directional Solidification of Eutectic Materials [in Russian], 

Metallurgiya, Moscow (1980). 

413 


